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Abstract. Brain imaging studies have set the stage for measuring brain
function in psychiatric disorders, such as depression, with the goal of
developing effective treatment strategies. However, data arising from
such studies are often hampered by noise confounds such as motion-
related artifacts, affecting both the spatial and temporal correlation
structure of the data. Failure to adequately control for these types
of noise can have significant impact on subsequent statistical analy-
ses. In this paper, we demonstrate a framework for extending the non-
parametric testing of statistical significance in predictive modeling by
including a plausible set of preprocessing strategies to measure the pre-
dictive power. Our approach adopts permutation tests to estimate how
likely we are to obtain a given predictive performance in an independent
sample, depending on the preprocessing strategy used to generate the
data. We demonstrate and apply the framework on examples of longitu-
dinal Positron Emission Tomography (PET) data following a pharmaco-
logical intervention.

1 Introduction

Modern neuroimaging studies are complicated and comprised of many steps
including subject selection, data acquisition, preprocessing and some form of
statistical analysis. In the past decade, there has been a growing concern about
the validity and reproducibility of produced findings in such studies, and this
has largely been attributed to low statistical power, software errors and flexible
data analysis strategies [1,10].

Data sharing initiatives such as OpenNeuro (openneuro.org) are now enabling
researchers to open up the subject selection and data acquisition factors of a
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study by sharing raw image data publicly. Statistical analysis tools are also
widely available in the major neuroimaging software packages (e.g. SPM, FSL,
AFNI and FreeSurfer) or on GitHub, and the outputs of statistical analyses
can be shared (e.g. on Neurovault). Furthermore, the analysis and statistical
methods have been under intense scrutiny in the last years and concerns about
errors in software packages as well as in the appropriate application of statistical
methods have been heatedly discussed [2,4].

Conversely, the influence of preprocessing on the outcome of the data anal-
ysis has besides a few initiatives in fMRI [2,3] been an overlooked factor. Many
laboratories have set up preprocessing pipelines that are used for all their stud-
ies and large research collaborations such as the Human Brain Project (HBP)
have implemented a single preprocessing pipeline1 that is used daily to extract
features from subjects enrolled in neuroscience research studies. Hence, while
researchers are focusing intensely on new statistical model development, the
interaction of different types of preprocessing steps with the following statistical
analysis is largely ignored [3].

One solution to limit the “researcher degrees of freedom” that has been pro-
posed is the pre-registration of complete analysis pipelines e.g. with the Open
Science Framework or AsPredicted [10]. The argument for pre-registration is that
researchers should not be constrained to a single analysis method, but rather pre-
define which approach they will use. Additionally, there might not even exist a
single best workflow for all studies of a given type, even though there is evidence
that different workflows might be optimal for different studies or even for differ-
ent individuals [3]. However, at the same time it seems to be implausible that
out of thousands of possible workflows only the chosen pre-registered one would
be able to show a true biological effect. It is much more likely that a range of
different processing pipelines would have yielded the same conclusion of a given
study. In the case of a strong effect, one might even hope that most processing
pipelines - so no matter how the data has been preprocessed - would be able to
detect the effect. Hence, it is also of interest to analyze not only the variance
arising from the preprocessing [2,3], but to take the step further and analyze the
variance that different preprocessing pipelines add to the statistical analysis of
a study and its conclusions. On the one hand, this approach can highlight spu-
rious findings due to a specific preprocessing pipeline, since most preprocessing
pipelines would not be able to produce the same result. On the other, it can also
give strong evidence for an effect if most preprocessing pipelines arrive at the
same or very similar result.

In this work, we present a comprehensive framework to test the influence of
preprocessing choices on the subsequent statistical analysis. We demonstrate how
the choice of preprocessing can affect our belief in the available sample data, x,
with class labels y, to generalize to the true underlying joint distribution p(x, y).
Our approach adopts a range of preprocessing choices as a generative model
for x, and evaluates the predictive performance for the conditional distribution
p(y|x) using permutations [6] and the maximum statistic [8]. By permuting and

1 See https://github.com/HBPMedical/mri-preprocessing-pipeline.
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evaluating across preprocessing choices, the framework provides a measure of
how likely we are to obtain the observed prediction by chance, only because the
preprocessing strategy interacted with the predictive model to identify a pattern
that happened to correlate with the class labels. We first detail the framework
and then give an example of its application based on a published study involving
the serotonin transporter and PET imaging [5].

2 Non-parametric Framework for Joining Multiple
Preprocessing Strategies with Prediction

The framework that we are proposing can roughly be broken into three major
components: (A) definition of a subset of equally plausible preprocessing strate-
gies, (B1) definition of the set of predictive models and the performance metric,
(B2) cross validation to select the optimal predictive model and estimate the
prediction, and (C) estimation of the statistical significance of the prediction
accuracy (Fig. 1).

2.1 Defining a Subset of Preprocessing Strategies

In all fields of neuroimaging, before any statistical model is applied to a given
data set {(xn, yn)} Nn=1, with N observations, the data is commonly preprocessed
using a set of steps such as motion correction, co-registration and partial volume
correction (Fig. 1A). The data set xn ∈ Rp are observations with p features
and yn ∈ {−1, 1} are the corresponding class labels. The entire sequence of
preprocessing steps is often referred to as a pipeline, designed to remove artifacts
and noise from the data. Designing the optimal sequence of preprocessing steps is
a challenging problem, mainly due to the high dimensionality of the data and due
to the complex spatio-temporal noise structure. Therefore, several preprocessing
algorithms have been proposed and refined over the years, with limited consensus
in the community on the optimal strategy. The preprocessed data can for pipeline
j be defined as {(xn,j , yn)} Nn=1.

2.2 Model Selection and Cross-Validation

Once the data has been preprocessed it is ready for statistical analysis. Next,
we need to (1) select a predictive model and tune the model parameters to the
data, and (2) assess the chosen predictive model by estimating its ability to
predict on unseen data. For both (1) and (2), one common approach is to use
cross-validation and evaluate the model in an independent test set (Fig. 1B).
For this purpose, the data has to be randomly divided into a training data set
and validation set. The training data may be further split into an inner cross-
validation loop (nested cross-validation) [11]. Finally, the entire cross-validation
has to be repeated M times to obtain an unbiased mean predictive accuracy.
This approach aligns with community guidelines on model selection and cross-
validation [11].
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Fig. 1. (A) Definition of a subset of preprocessing strategies j = 1, ..., J : This includes
preprocessing steps such as motion correction, co-registration, delineation of volumes
of interest, partial volume correction, and kinetic modeling. (B) Model selection and
cross-validation: For each pipeline j, select a classification model (e.g. Linear Discrim-
inant), and a K-fold nested cross-validation scheme with M repetitions. (C) Evaluate
the significance with permutations: Randomly permute the class labels y ∈ {−1, 1},
and re-run (B) for each pipeline j to obtain a classification accuracy for the z = 1, .., Z
permutation. For each permutation z select the maximum accuracy across all prepro-
cessing pipelines J and for Z permutations generate a null-distribution of maximum
accuracies. Use the null-distribution of the max-accuracies to obtain the p-value for
each pipeline at a significance level α. NOTE: uncorrected p-values refer to original
accuracies according to their permuted null-distribution at a significance level α.

2.3 Permutation Test for a Single Pipeline

Once a model has been selected and evaluated to provide a predictive accuracy,
the gold standard is to estimate the statistical significance of the observed accu-
racy using permutations (Fig. 1C). The significance of each model and pipeline
is estimated by randomly permuting the class labels Z times (i.e., sampling a
permutation z from a uniform distribution πz over the set, ΠN , of all permu-
tations of indices 1, ..., N) and re-running the above M times repeated K-fold
cross-validation procedure, and after Z replications generate an empirical null-
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distribution. This distribution may be used to obtain an empirical p-value for
each model at an acceptable significance level α. Normally, this would be the last
step of the data analysis. However, even though nested cross-validation can tune
model parameters while avoiding circularity bias, there is still a hidden multiple
comparison problem following the application of different preprocessing strate-
gies. We therefore propose an extension to the current guidelines, by introduc-
ing a test statistic of maximum accuracies across equally plausible preprocessing
pipelines. This approach should have a strong control over experiment-wise type
I error.

2.4 Permutation Test for Multiple Pipelines

Rather than computing the permutation distribution of the accuracy for a sin-
gle preprocessing pipeline j, we compute the permutation distribution of the
maximum accuracy across all preprocessing pipelines. Let ΠN be a set of all
permutations of indices 1, ..., N , where N is the number of independent observa-
tions in the data set. The permutation test procedure that consists of Z iterations
is defined as follows:

• Repeat Z times (with index z = 1, ..., Z)
– sample a permutation πz from a uniform distribution over ΠN

– compute the accuracy for each pipeline j for this permutation of labels
– save the maximum accuracy across all pipelines J

tzmax = max
j

{Acc(x1,j , yπz
1
, ...,xN,j , yπz

N
)}

• Construct an empirical cumulative distribution of maximum accuracies

P̂max(T ≤ t) =
1
Z

Z∑

1=z

Θ(t − tzmax)

where Θ is a Heaviside step function (Θ(x) = 1, if x ≥ 0; 0 otherwise).
• Compute the accuracy for the true labels (non-permuted) for each pipeline j,

t0,j = Acc(x1,j , y1, ...,xN,j , yN ), and its corresponding p-value pj0 under the
empirical distribution P̂max.

In our case, the null hypothesis assumes that the two classes have identical
distributions, ∀x : p(x|y = 1) = p(x|y = −1), hence we deal with class balanced
data. We reject the null hypothesis at level α if the accuracy for the true labeling
of the data is in the α times 100% of the permuted distribution of the maximum
accuracy. We can reject the null hypothesis for any preprocessing pipeline with
an accuracy exceeding this threshold.
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Fig. 2. Accuracy as a function of p-value for 384 preprocessing strategies. The blue
dots indicate the p-value for each pipeline according to its permuted null distribution
(uncorrected) and the black dots indicate the p-value according to the maximum per-
muted null distribution (corrected). The red dotted line is the 95% significance level.

2.5 Use of the Maximum Statistic in Neuroimaging

Correction of p-values using the maximum statistic has been used before in sta-
tistical studies of neuroimaging data [7,8]. Furthermore, several studies have
examined the effects of multiple preprocessing options in combination with pre-
diction [2,3]. The latter studies mainly focused on increasing predictive accu-
racy by examining multiple preprocessing strategies, but did not evaluate the
prediction relative to random. Our work extends the non-parametric testing of
statistical significance in predictive modeling by including a plausible set of pre-
processing strategies to measure the predictive power.

3 Experiments

We illustrate the use of the framework in an experiment with data from a lon-
gitudinal PET study with a baseline and a re-scan, following a pharmacological
intervention [5]. This data is publicly available through the CIMBI database
(www.cimbi.dk). The data, x, consists of 60 observations (30 baseline and 30
intervention scans) each with levels of serotonin transporter binding (BPND)
in 34 cortical brain regions covering the entire neocortex. The corresponding
class labels are yn ∈ {baseline, intervention} . For quantification of BPND, we
preprocessed the data using a fixed sequence of five preprocessing steps, each
with varying parameter choices: (1) motion correction (with/without), (2) co-
registration (four choices), (3) delineation of volumes-of-interest (three choices),
(4) partial volume correction (four choices), and (5) kinetic modeling for quantifi-
cation of BPND (MRTM, SRTM, Non-invasive Logan and MRTM2). This results
in 2×3×43 = 384 combinations of preprocessing (Fig. 1A). Details are described
in [9]. In the experiment, we used a Linear Discriminant classifier to predict the
classes (baseline and intervention). The number of M repeated cross-validation
iterations was 10, the number of K cross-validation folds was 5, and the number
of permutation iterations Z was 1,000. To obtain true independence between
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Fig. 3. (A) Average classification accuracies across preprocessing pipelines obtained
using nested cross-validation with 10 repeats (red). The permuted null distribution of
classification accuracies (1000 permutations) across preprocessing pipelines is visualized
by the green distribution. The vertical dotted line is the 95% significance level of
the permuted null distribution of classification accuracies across pipelines (B) The
blue distribution is the permuted null distribution (1000 permutations) of maximum
classification accuracies across preprocessing pipelines. The vertical dotted line is the
95% significance level for the permuted null distribution of maximum accuracies. (Color
figure online)

the data and the labels, observations for each subject (i.e. baseline and interven-
tion) were always stratified in the cross-validation. To summarize, the goal is to
predict whether an observation in x is either a baseline or an intervention scan.

We start by studying the behaviour of accuracies and p-values, when varying
the preprocessing strategy, reported in Fig. 2. Every point in Fig. 2 represents a
preprocessing strategy with an accuracy and a p-value, either uncorrected (blue)
or corrected (black). By changing the preprocessing strategy, this substantially
improves the accuracy, with values ranging from 52% to 75%. There also exists a
subset of preprocessing strategies that are significantly different (p < 0.05) from
their permuted null distribution. The black line in Fig. 2 shows the p-values
relative to the maximum permuted null distribution. The p-values decrease with
increasing accuracy, but a much higher accuracy is needed compared to the blue
line to obtain a significant p-value.

Figure 3 shows the distribution of accuracies for the estimated mean accu-
racies with the true labels (red), for the randomly permuted (green), and the
maximum permuted (blue). Most preprocessing strategies fall within the per-
muted null distribution, but a subset of the preprocessing strategies are able to
obtain statistical significance at p < 0.05 (i.e. less than 5% chance of observing
better than 75% accuracy if the data and labels are truly independent). But to
reject the null hypothesis under the empirical distribution of the maximum clas-
sification accuracies across pipelines, one would need an expected classification
accuracy of 85% to obtain statistical significance at α = 0.05 (Fig. 3).
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4 Discussion and Conclusion

In this work, we extend the non-parametric testing of statistical significance in
predictive modeling by including a plausible set of preprocessing strategies to
measure the predictive power. We demonstrate its application in a longitudinal
PET study. In this case, there are a few choices of preprocessing that lead to a
significant prediction while the majority of preprocessing choices lead to a non-
significant prediction (uncorrected). When correcting using knowledge about
all the applied pipelines, no significant predictions survive (corrected using the
maximum statistic).

While the statistical analysis of each individual preprocessing pipeline is car-
ried out in an optimal fashion due to the use of M times repeated K-fold nested
cross-validation, some of the preprocessing pipelines can still result in a sig-
nificant prediction by chance. The reason for this can be that the preprocess-
ing pipeline introduces spurious relations between the features and the labels,
consequently overestimating the generalizability of the learning method. Our
approach enables the examination of predictions across multiple preprocessing
choices, providing a measure of the variance of the predictions across pipelines.
Based on this we advise that care must be taken in a statistical analysis to avoid
attributing an effect to a treatment/condition that was due to a single pipeline
and/or predictive model.

The framework that we are proposing is not without limitations. First, while
the goal of preprocessing is to factor out correlated features from the feature
one is interested in, this is not necessarily a guarantee. For example, if one
preprocessing strategy fails at factoring out correlated features and produces a
“significant finding”, and a different pipeline correctly removes correlated fea-
tures and produces a “non-significant finding”, this cannot be detected. This is
one of the major drawbacks of data-driven selection of preprocessing strategies,
and one risks drawing wrong conclusions if blindly selecting the preprocessing
in a data-driven manner. In addition, as we are assuming independence between
the preprocessing choices, one could worry that the effect we are observing, is
simply due to the effect of assigning too much probability mass to strategies that
no one would ever use. However, if we assume that all the included strategies are
equally likely to be used, the proposed framework provides the researcher with a
strong belief in the prediction under a set of plausible preprocessing strategies.
This belief is both useful for the researcher carrying out the study, but also for
colleagues reviewing the work for publication, as the impact of minor variations
in acquisition/preprocessing is challenging to evaluate. The framework is also
very flexible, and may be expanded to include a larger subset of preprocessing
pipelines, a larger subset of features, but also a larger subset of statistical mod-
els (SVM, ANOVA, t-test etc.) with varying model complexities. However, it is
noteworthy that the inclusion of more pipelines will also broaden the permuted
null distribution further due to increased noise, so an increase in the number of
pipelines will punish the ability to obtain statistical significance for any pipeline.
The main point we hope to convey is that in future studies, researchers should not
only pre-register their preprocessing or analysis as proposed by [10], but should



204 M. Nørgaard et al.

also provide the variance of their results across a set of plausible preprocessing
pipelines by using our framework. Because data acquisition is the most costly
part of any experiment, spending resources on computing power by employing
a framework as we propose is negligible in comparison. For future work, we still
need to find a way of assigning appropriate non-uniform probability mass to
strategies with different levels of relevance, otherwise we risk that the variance
of the null distribution of maximum accuracies will be grossly overestimated.
However, this is beyond the scope of this paper, and is left for future work.

References

1. Button, K.S., et al.: Power failure: why small sample size undermines the reliability
of neuroscience. Nat. Rev. Neurosci. 14(5), 365 (2013)

2. Carp, J.: On the plurality of (methodological) worlds: estimating the analytic flex-
ibility of fMRI experiments. Front. Neurosci. 6 , 149 (2012)

3. Churchill, N.W., et al.: An automated, adaptive framework for optimizing pre-
processing pipelines in task-based functional MRI. PLoS ONE 10 (7), e0131520
(2015)

4. Eklund, A., et al.: Cluster failure: why fMRI inferences for spatial extent have
inflated false-positive rates. PNAS 113(28), 7900–7905 (2016)

5. Frokjaer, V.G., et al.: Role of serotonin transporter changes in depressive responses
to sex-steroid hormone manipulation: a positron emission tomography study. Biol.
Psychiatry 78 (8), 534–543 (2015)

6. Golland, P., Fischl, B.: Permutation tests for classification: towards statistical sig-
nificance in image-based studies. In: Taylor, C., Noble, J.A. (eds.) IPMI 2003.
LNCS, vol. 2732, pp. 330–341. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45087-0 28

7. Holmes, A.P., et al.: Nonparametric analysis of statistic images from functional
mapping experiments. JCBFM 16 (1), 7–22 (1996)

8. Nichols, T.E., Holmes, A.P.: Nonparametric permutation tests for functional neu-
roimaging: a primer with examples. Hum. Brain Mapp. 15 (1), 1–25 (2002)

9. Nørgaard, M., et al.: Optimization of preprocessing strategies in Positron Emission
Tomography (PET) neuroimaging: a [11C] DASB study. NeuroImage 199, 466–479
(2019)

10. Poldrack, R.A., et al.: Scanning the horizon: towards transparent and reproducible
neuroimaging research. Nat. Rev. Neurosci. 18 (2), 115 (2017)

11. Varoquaux, G., et al.: Assessing and tuning brain decoders: cross-validation,
caveats, and guidelines. NeuroImage 145 , 166–179 (2017)


