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Abstract—It has long been recognized that the data prepro-
cessing chain is a critical part of a neuroimaging experiment.
In this work we evaluate the impact of preprocessing choices in
univariate and multivariate analyses of Positron Emission To-
mography (PET) data. Thirty healthy participants were scanned
twice in a High-Resolution Research Tomography PET scanner
with the serotonin transporter (5-HTT) radioligand [''C]DASB.
Binding potentials (BPxp) from 14 brain regions are quantified
with 384 different preprocessing choices. A univariate paired
t-test is applied to each region and for each preprocessing
choice, and corrected for multiple comparisons using FDR within
each pipeline. Additionally, a multivariate Linear Discriminant
Analysis (LDA) model is used to discriminate test and retest
BPxp, and the model performance is evaluated using a repeated
cross-validation framework with permutations. The univariate
analysis revealed several significant differences in 5-HTT BPnp
across brain regions, depending on the preprocessing choice. The
classification accuracy of the multivariate LDA model varied
from 37% to 70% depending on the choice of preprocessing,
and could reasonably be modeled with a normal distribution
centered at 51% accuracy. In spite of correcting for multiple
comparisons, the univariate model with varying preprocessing
choices is more likely to generate false-positive results compared
to a simple multivariate analysis model evaluated with cross-
validation and permutations.

I. INTRODUCTION

Positron Emission Tomography (PET) is an invaluable
tool used in many aspects of state-of-the-art neuroscience to
capture the spatiotemporal distribution of neurotransmitters
and receptors in the brain. However, due to limitations in
data acquisition, the generative signals making up these PET
images are significantly affected by complex spatiotemporal
noise patterns, consequently resulting in a suboptimal signal-
to-noise ratio (SNR). These limitations have led to the de-
velopment of a large array of data preprocessing strategies
designed to remove artefacts and noise from the images. It
has long been recognized that preprocessing is a critical part
of the PET analysis framework, with new PET radioligands
often being required to have been carefully validated in a
test-retest setting with different kinetic models and at differ-
ent scan lengths (Parsey et al. 2000, Ginovart et al. 2001).
Nonetheless, several subsequent studies deviate substantially
from these analyses and guidelines presented in published
validation studies, implicitly assuming that the chosen set of

preprocessing steps are insensitive to the outcome measure and
produce near-optimal results (Ngrgaard et al. 2018). Despite
the importance and usefulness of validating kinetic models and
scan length, the impact of several other important factors such
as preprocessing strategies for delineating volumes of interest
(VOI), whether to apply motion correction (MC), how to
accurately perform co-registration, and whether to use partial
volume correction (PVC), remains unclear. In this study, we
will extend the question of the influence of preprocessing
choices to also include the subsequent statistical analysis using
either univariate of multivariate analysis approaches. This is
important because the statistical analysis largely depends on
the quality of the data going into the analysis, and may
therefore produce biased and non-reproducible results if the
uncertainty of the data is not taken into account.

II. METHODS
A. PET and MRI Data Collection

All participants were scanned using a Siemens ECAT High-
Resolution Research Tomography (HRRT) scanner operating
in 3D list-mode and with the highly selective radioligand
['!C]DASB. The imaging protocol consisted of a single-bed,
90 minutes transmission acquisition post injection of 587
+ 30 (mean 4+ SD) MBq, range 375-612 MBq, bolus into
an elbow vein. PET data was reconstructed into 36 frames
(6x10, 3x20, 6x30, 5x60, 5x120, 8x300, 3x600 seconds) using
a 3D-OSEM-PSF algorithm with TXTV based attenuation
correction (image matrix, 256 x 256 x 207; voxel size, 1.22 x
1.22 x 1.22 mm) (Sureau et al. 2008, Keller et al. 2013). PET
data was obtained from 30 healthy women (mean age: 25 + 5.9
years, range: 18 - 37) from a previous randomized, placebo-
controlled and double-blind intervention study investigating
the role of 5-HTT changes in depressive responses to sex-
steroid hormone manipulation (Frokjaer et al. 2015). The
women served as a control group receiving placebo only, i.e.,
the data represent test-retest without any expected changes in
['!C]DASB binding. All participants were PET scanned two
times with a median interval of 34 days (range: 27 - 122
days). An anatomical 3D T1-weighted MP-RAGE sequence
with matrix size = 256 x 256 x 192; voxel size = 1 x 1
x | mm; TR/TE/TT = 1550/3.04/800 ms; flip angle = 9°
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was acquired for all participants using a Siemens Magnetom
Trio 3T MR scanner or a Siemens 3T Verio MR scanner.
Additional information can be found in Frokjaer et al. 2015.
The study was registered and approved by the local ethics
committee (protocol-ID: H-2-2010-108). All participants gave
written informed consent.

B. Preprocessing

We evaluated the effects of applying a sequence of five
preprocessing steps to the PET data, followed by either a
univariate or multivariate analysis model. The final outcome
measure for each pipeline is the non-displaceable binding
potential (BPxp) in 14 representative brain regions: amygdala,
thalamus, putamen, caudate, anterior cingulate cortex (ACC),
hippocampus, orbital frontal cortex, superior frontal cortex,
occipital cortex, superior temporal gyrus, insula, medial-
inferior temporal gyrus, parietal cortex, and entorhinal
cortex. Each preprocessing step consisted of 2-4 choices,
and all the choices have previously been used in the PET
literature. The steps are listed below in the order in which
they were applied, combinatorially summing to a total of 384
preprocessing pipelines.

1. Delineation of Volumes of Interest (VOI):
All MRI scans were processed using FreeSurfer (FS)
(http://surfer.nmr.mgh.harvard.edu, version 5.3). Subsequently
to running the FS pipeline, manual edits can be applied
to correct for errors. If a T2-weighted MRI is available,
semi user-independent edits can be made to the FS output
by re-running the FS pipeline with the T2-weighted MRI.
We examined all three choices, and now refer to these as
FS-RAW (standard output), FS-MAN (output with manual
edits) and FS-T2P (output with the T2 stream).

2. Motion correction (MC): PET MC was executed using
AIR (v. 5.2.5). Prior to alignment, each frame was smoothed
using a 10 mm Gaussian 3D kernel and thresholded at the
20-percentile level. Alignment parameters were estimated for
PET frame 10-36 using AIR, geometrically transformed using
a scaled least squares cost-function, and resliced into a 4D
motion corrected data set (Frokjaer et al. 2015). The data was
analyzed either with or without MC.

3. Co-registration: All single-subject PET time activity
curves (TACs) were initially either summed or averaged over
all time frames to estimate a time-weighted (twa) or aver-
aged (avg) 3D image for co-registration. Two different co-
registration techniques were subsequently applied to either the
twa or the avg image, namely Normalized Mutual Information
(NMI, Studholme et al. 1999) or Boundary-Based Registration
(BBR, Greve et al. 2009). This results in four choices for co-
registration.

4. Partial Volume Correction (PVC): The data were
analyzed either without or with three different partial volume
correction (PVC) approaches. The VOI-based PVC technique,
Geometric Transfer Matrix (GTM), by Rousset et al. 1998
was applied, establishing a forward linear model relating
[''C]DASB intensities to the VOI means, as described in

Greve et al. 2016. Because the PSF for a HRRT scanner varies
from 1-4 mm depending on the distance from the center of the
field-of-view (Olesen et al. 2009), we ran the analyses with
the PSF settings; 0 mm, 2 mm, and 4 mm.

5. Kinetic Modeling (KinMod): We applied four kinetic
modeling approaches, all based on reference tissue model-
ing (RTM). These include the Multilinear Reference Tissue
Model (MRTM) and the Multilinear Reference Tissue Model
2 (MRTM2) by Ichise et al. 2003. The non-invasive Logan
reference tissue model was applied as described in Logan et
al. 1996, and the Simplified Reference Tissue Model, SRTM,
was applied as described by Lammertsma and Hume, 1996.

C. Univariate Analysis

The difference in estimated BPyp’s between test and retest
sessions as a function of pipeline J and region K, was
evaluated using paired t-tests. All data was tested for normality
using a Kolmogorov-Smirnov (KS) test. Within each pipeline,
J, the 14 regions were corrected for multiple comparisons
using False Discovery Rate (FDR, Benjamini & Hochberg) at
q = 0.05. A P-value less than 0.05 is considered a significant
result and represents a false positive.

D. Multivariate Analysis

In this study, we used a multivariate Linear Discriminant
Analysis (LDA) model for predictive classification of test
(class 1) and retest (class 2) BPyp. For this two-class dataset,
X € R, LDA estimates an optimal discriminant that max-
imizes the ratio of between-class covariance to within-class
covariance. We can write the conditional posterior probability
of X originating from class C, as the following:

1 1 =1
p(X|Cr;0) = Eew{—jlhrainT(X — X)) I} (D
where Xk

train 1S the training data mean from class Cy,
and Liyain 1S a linear transformation matrix normalized so
that training variance is unity. From (1), we can estimate the
posterior probability of correct class assignment p(Cy|X;0).
The model was trained by subsampling 80% of the data
(balanced data-set of 24 test and 24 re-retest scans) in a 5-fold
cross-validation framework. The model was then evaluated
using a validation set, X, consisting of the remaining 20%
(6 subjects with test and re-test scans). The validation data
was independent of the training data and completely held out
of the training procedure. The subsampling procedure was
repeated so that each label was assigned to the validation
data exactly once. The entire cross-validation framework was
repeated 10 times to obtain an unbiased mean classification
accuracy (Varoquaux et al. 2017). The significance of each
model was estimated by randomly permuting the class labels
1000 times and re-running the above 10 times repeated 5-
fold cross-validation procedure to generate an empirical null-
distribution. This provides an empirical P-value for each model
and pipeline.



III. RESULTS

The classification accuracy is estimated as the number
correctly classified labels divided by the total number of labels.

A. Univariate Analysis

The paired t-test was applied to the entire dataset (i.e.
test and retest BPyp) and for the 384 pipelines. The false
positive rates (FPR) are summarized in Figure 1 and 2 for
the uncorrected and corrected for multiple comparisons using
FDR, respectively, with higher FPR being worse.
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Fig. 1. Number of significant results (paired t-test, P < 0.05) in 384 pipelines
divided by 384, expressed as a percentage for 14 brain regions. Blank is not
corrected for multiple comparisons, whereas green is corrected using FDR.

All significant results reported passed the KS test. The
uncorrected analysis shows a large percentage of significant
results (1929 out of 5376 statistical tests) for both subcortical
and cortical regions (Figure 1). When correcting for multiple
comparisons using FDR, the number of significant results is
dramatically reduced to 133 significant results (Figure 2).
However, for several brain regions, significant results can
still be obtained and are influenced by different choices in
the preprocessing pipeline (Figure 2). In general, the choices
of preprocessing being mostly responsible for the significant
results (i.e. false positive results) are MC, and the kinetic
models MRTM and SRTM.

B. Multivariate Analysis

The results of the multivariate analysis are presented in
Figure 3A and 3B for the preprocessing-dependent and per-
muted classification accuracies, respectively. Depending on
the choice of preprocessing, the classification accuracy var-
ied from 37% to 70% across all repetitions, with a mean
accuracy and standard deviation of 51% and 4%, respectively.
The pipeline that produced the highest classification accuracy
(maxPipeline) was: VOI=FS-T2P, MC=no, Co-reg=NMlyg,
PVC=no, KinMod=MRTM. The mean accuracy for this
pipeline was 63.3% (P = 0.12) relative to the randomly
permuted distribution. One of the 10 repetitions of the 5-
fold cross-validation for maxPipeline produced a classification
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Fig. 2. Number of significant results (paired t-test, P < 0.05) in 384
pipelines divided by 384, expressed as a percentage for 14 brain regions
(corrected for multiple comparisons at FDR=0.05 within each pipeline). The
five vertical bars within each region represent the distribution of choices,
and have the order: 1. VOI (1=FS-RAW, 2=FS-MAN, 3=FS-T2P), 2. MC
(1=yes, 2=no), 3. Co-reg (1=BBavg, 2=NMlavg, 3=BBwa, 4=NMliwa), 4.
PVC (1=noPVC, 2=GTMO, 3=GTM2, 4=GTM4), 5. KinMod (1=MRTM,
2=MRTM2, 3=SRTM, 4=Logan).

accuracy of 70%, and thereby significantly different from its
permuted null-distribution at P = 0.01 (Figure 3B).

IV. DISCUSSION

Here, we present a comprehensive framework for testing the
impact of a wide range of preprocessing pipeline choices in
combination with univariate and multivariate analysis models.
The presented results question the validity of preprocessing
pipeline choices being independent of the neuroimaging out-
come in [''C]DASB measurements using PET. For univari-
ate models without correction for multiple comparisons, the
percentage of significant results was largely inflated (36%
significant results across all pipelines and regions) given
the experimental design being a test-retest study with no
expected changes between scans. When correcting for multiple
comparisons using FDR, several significant results were still
present. In a post-hoc analysis, we also corrected the results
using Bonferroni correction within each pipeline, producing
a total of 23 significant results in putamen (N = 1) and
insula (N = 22) across all pipelines. This corresponds to
0.4% significant results with Bonferroni compared to 2.5%
with FDR, across 5376 statistical tests.

Regarding the performance of the multivariate models, the
distinction between test and retest BPyp as a function of
preprocessing pipeline choice was not evident. We illustrate
that the spread of classification accuracies as a function of
preprocessing pipeline (Figure 3A) can reasonably be modeled
as a Gaussian signal distribution with mean 51% and standard
deviation 4%. Notably, the significant classification finding for
a single cross-validation run depicted in Figure 3B suggests
that, depending on the preprocessing choice and without
performing repeated cross-validation, significant results (i.e.
false positives) are obtained using a multivariate model and
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Fig. 3. (A) Normalized distribution of classification accuracies (%) for 10 times repeated 5-fold cross-validation and for 384 different preprocessing choices
(B) Normalized distribution of 1000 permuted classification accuracies (%) for the pipeline maximizing the classification accuracy in (A). The black bars are
the classification accuracy for 10 individual repetitions for the pipeline and the blue bar is the mean classification accuracy over the 10 repetitions. One of
the repetitions by chance produces a classification accuracy higher than the 95% significance level (red vertical dotted line).

with permutations. This is simply due to the variance in the
cross-validation results. This behaviour was also described
in detail by Varoquaux et al. 2017, advocating to perform
repeated cross-validation and to use the mean as an unbiased
estimator of classification performance.

A. Future Work

The performance of univariate and multivariate analysis
models as a function of preprocessing pipeline should opti-
mally be evaluated for all radiotracers. While there can be
several reasons for why we observe a difference between test
and retest, ranging from biological biases, data acquisition
biases and preprocessing biases, it becomes non-trivial how we
can subsequently separate these components (Kim et al. 2006).
These potential biases can be added as variables in future
models to explain variation, however, this quickly becomes an
ill-posed problem given the high dimensionality of the data
and low sample sizes. A limitation of our test-retest study
is that there could be a possible order and/or placebo effect
present. This has not been reported previously and warrants
further investigation.
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