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False positive rates in positron emission
tomography (PET) voxelwise analyses

Melanie Ganz1,2,* , Martin Nørgaard1,3,* , Vincent Beliveau4,
Claus Svarer1 , Gitte M Knudsen1,3 and Douglas N Greve5

Abstract

Issues with inflated false positive rates (FPRs) in brain imaging have recently received significant attention. However, to

what extent FPRs present a problem for voxelwise analyses of Positron Emission Tomography (PET) data remains

unknown. In this work, we evaluate the FPR using real PET data under group assignments that should yield no significant

results after correcting for multiple comparisons. We used data from 159 healthy participants, imaged with the serotonin

transporter ([11C]DASB; N¼ 100) or the 5-HT4 receptor ([
11C]SB207145; N¼ 59). Using this null data, we estimated

the FPR by performing 1,000 group analyses with randomly assigned groups of either 10 or 20, for each tracer, and

corrected for multiple comparisons using parametric Monte Carlo simulations (MCZ) or non-parametric permutation

testing. Our analyses show that for group sizes of 10 or 20, the FPR for both tracers was 5-99% using MCZ, much higher

than the expected 5%. This was caused by a heavier-than-Gaussian spatial autocorrelation, violating the parametric

assumptions. Permutation correctly controlled the FPR in all cases. In conclusion, either a conservative cluster forming

threshold and high smoothing levels, or a non-parametric correction for multiple comparisons should be performed in

voxelwise analyses of brain PET data.
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Introduction

In recent years, there has been an increased focus on
questioning the statistically significant findings in neu-
roimaging. The community has had a rising interest in
the statistical validity of neuroimaging findings includ-
ing general discussions regarding publication bias1 and
sample size.2 There has even been a movement for rede-
fining what statistical significance level should be used3

and a contra-movement arguing that a p-value thresh-
old should be abandoned altogether.4 Most of these
discussions are driven by theoretical considerations
and general statistical arguments making them hard
to follow for a general community.

But there have also been efforts to call attention to
the effects of overestimating the statistical significance
in real data. In spring of 2016, Eklund et al.5 showed
that parametric-based clusterwise inferences have
inflated false-positive rates (FPRs) in fMRI group
analyses. In 2017, Greve and Fischl6 followed by
highlighting the fact that surface-based anatomical

analyses also have inflated FPRs. Furthermore, a few
studies have addressed the FPRs in voxel-based mor-
phometry (VBM),7 reporting elevated FPRs in the
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range of 10–50%, when using parametric clusterwise

inferences.8,9 Across these studies and across neuroim-

aging modalities, the authors have used real data and

showed, using experiments mimicking common practi-

ces, how many false positive findings a regular analysis

would yield. This has underscored the need for

researchers to show more consideration of the under-

lying assumptions of their statistical models. These

reports from fMRI, VBM and surface-based anatomi-

cal analyses also show that (non-parametric)

permutation-based clusterwise inference properly con-

trolled the FPR.
In the spirit of Eklund et al.5 and Greve and Fischl,6

we used a common analysis workflow for a voxelwise

PET analysis10,11 and investigated the FPR based on

real PET data of 100 healthy controls scanned with the

radioligand [11C]DASB, targeting the serotonin trans-

porter, and 59 healthy controls scanned with [11C]

SB207145, targeting the 5-HT4 receptor. While the

methodology is very similar to previous work in struc-

tural and functional MRI, the novelty of this work is in

applying it to a new modality where the source of FPRs

will be different and so the ability to control the FPRs

with parametric methods uncertain.
PET analysis is most often performed on anatomi-

cally defined regions of interest (ROIs) in the brain.

However, voxelwise analyses in PET neuroimaging

are also prominent (see Table 1) as an exploratory tech-

nique to identify areas showing an effect when no a

priori anatomical hypothesis exists.22 Voxelwise analy-

ses have been applied in PET with varying preprocess-

ing or statistical parameter choices (Table 1) such as

sample size, motion correction (yes/no), spatial

smoothing (6–12mm), statistical analysis type (one-

sided vs. two-sided group difference), and correction

type for multiple spatial comparisons across voxels

(multiple hypothesis testing). Currently, there exist no

unified guidelines for carrying out voxelwise PET anal-

yses, but in recent years the impact of preprocessing

and statistical analyses on the final results have been

investigated.10,22,23 The application of motion correc-

tion has been shown to have a large impact on the

results, as motion artefacts can invalidate the PET

data.10,24 However, while motion correction has been

shown to be important, less attention has been given to

the impact of smoothing levels, and the correction for

multiple hypothesis testing. Typically, the spatial

smoothing level and correction level for multiple test-

ing are chosen with limited explicit knowledge of the

exact impact on the results. Spatial smoothing is used

to reduce noise and boost signal-to-noise ratio, and

exploratory analyses have shown that it has a substan-

tial effect.12 In neuroimaging, correction for multiple

testing has gained much attention due to work by

Eklund et al.5 and Greve and Fischl.6 However, despite

these alarming studies, several researchers still choose a

cluster forming threshold (CFT) of p¼ 0.05, largely

ignoring that this threshold will result in inflated

false-positive rates.
The aim of this paper is to evaluate the impact of

voxelwise PET analyses and corrections for multiple

testing on the FPR. We will investigate several aspects

of voxelwise PET analyses ranging from preprocessing

to correction for multiple comparisons and explore

how these may have an impact on the FPR. This

includes 1) the effect of different corrections for multi-

ple statistical hypothesis tests, and 2) the effect of pre-

processing choices, such as motion correction or spatial

smoothing. Based on these results, we will provide

guidelines that will adequately control the FPR.

Furthermore, we will highlight which brain areas

seem to be more sensitive to false positive results so

that this information can be taken into account when

interpreting and reporting results in future PET studies.

Table 1. Previous PET studies carrying out a voxelwise analysis.

Reference N MC FWHM Analysis type Correction type

Matsumoto et al.12 18/4 No 12 One-sided test CFT<0.001, 25v

Hesse et al.13 21/19 No 12 One-sided test CFT<0.001, 30v

Lanzenberger et al.14 19 Yes – – CFT<0.05, FDR

Hesse et al.15 22/23 No 12 One-sided test CFT<0.005, 30v

Frick et al.16 18/18 Yes 12 – CFT<0.005, FWE

Frick et al.17 18/18 Yes 8 Two-sided test CFT<0.001, 640 mm3

Hesse et al.18 15/30 Yes 8 Two-sided test CFT<0.005, 30v

McMahon et al.19 23 Yes 10 Two-sided test Permutations

Deen et al.20 16/15 Yes 6 Two-sided test CFT<0.05, FWE

Hjort et al.21 43/27 Yes 12 One-sided test CFT<0.05, FWE

Note: A selection of studies performing parametric analyses of PET data, with various sample sizes (N), motion correction (MC), spatial smoothing

with varying full-width half maximum (FWHM), one-sided or two-sided tests, and correction for multiple comparisons testing with different statistical-

and contiguous voxel thresholds (v). Only studies with FWE correction used random field theory to correct for multiple comparisons. Abbreviations:

Cluster-forming threshold (CFT), Family-wise error (FWE).
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Methods

Dataset

The dataset used in this study is from the CIMBI data-

base;25 all data from this database are accessible upon

request. A total of 159 unique PET scans and corre-

sponding structural MRI scans were used to image

either the serotonin transporter using the radioligand

[11C]DASB (N¼ 100) or the 5-HT4 receptor using [11C]

SB207145 (N¼ 59).11 Thirty of the available subjects

also received a second [11C]DASB scan, allowing for

a longitudinal analysis. The acquisition of data was

approved by the ethics committee for the capital

region of Copenhagen. All subjects provided written

informed consent prior to participation, in accordance

with The Declaration of Helsinki II.

Acquisition and preprocessing

All PET and MR scans were analyzed in the individu-

al’s volume space as described in Beliveau et al.11

Briefly, the PET data was acquired on a Siemens

High-Resolution Research Tomography (HRRT)

PET scanner with a 90 and 120minutes scan for [11C]

DASB and [11C]SB207145, respectively (matrix

size¼ 256� 256� 207; voxel size¼ 1.2mm). PET data

was reconstructed using a 3D-OSEM-PSF26–28 with a

point spread function (PSF) of 4mm and was corrected

for head motion using AIR (v. 5.2.5). The MRI data

was acquired as an isotropic T1-weigthed MP-RAGE

for all participants (matrix size¼ 256� 256� 192;

voxel size¼ 1mm; TR/TE/TI¼ 1550/3.04/800ms; flip

angle¼ 9�) using either a Siemens Magnetom Trio 3T

or a Siemens 3T Verio MR scanner. All MR data was

processed using FreeSurfer v.5.329 (but no surface-

based analysis was used). For each subject, the PET

data was co-registered to the MRI data using a

boundary-based registration (BBR),30 and subsequent-

ly spatially normalized with an affine transform to a

2� 2� 2mm standard space using the MNI305 atlas

provided by FreeSurfer (matrix size: 76� 76� 93).

The total size of the mask covering the brain was

304,611 voxels. All group analyses were carried out in

MNI305 space. The PET data was smoothed with 4, 6,

8, 10 or 12 mm full width half maximum (FWHM)

using a 3D Gaussian kernel, and the non-

displaceable binding potential (BPND) was then quan-

tified for each voxel in PETsurfer,22 based on dynamic

PET acquisitions and kinetic modeling with MRTM2

with cerebellum (excluding vermis) as reference

region.31 This results in voxelwise maps of BPND for

each subject and at each smoothing level. For the lon-

gitudinal data, the data were additionally processed

either with/without motion correction, or with 0 or

6mm spatial smoothing using a 3D Gaussian kernel.
Longitudinal data allows us to evaluate the impact of
possible subject-specific neuroreceptor features (similar
to the effect of unique anatomical features as found in
Greve and Fischl6).

Random group analyses

Following Eklund et al.5 and Greve and Fischl,6 for
each of the two radioligands, 20 (or 40) subjects were
randomly selected, and randomly assigned to one of
two groups of size 10 (or 20). The motivation for
choosing these group sizes is that they reflect
common sample sizes of clinical PET studies. A two-
group two-sided voxelwise GLM analysis was per-
formed on the BPND maps for each of the five selected
spatial smoothing levels. As no covariates (e.g. age or
sex) were added in the GLM analysis, the model simply
corresponds to a t-test of independent group means.
Clusters were formed by thresholding the voxel-wise
maps at cluster forming thresholds (CFT) of 0.05,
0.01 and 0.001. Since we assume that there are no
actual group differences, any significant cluster
(p< 0.05) is interpreted as a false positive outcome.
The analysis was repeated 1,000 times and the resulting
fraction of false positives represented our estimate of
the FPR (Figure S1). The FPR is expected to be 50/
1,000¼ 5% false positives. P-values for clusters were
estimated using permutations and Monte Carlo
(MCZ) simulations, as implemented in FreeSurfer.29

MCZ simulations are simply volumes of simulated
Gaussian noise smoothed with a Gaussian kernel at a
FWHM equal to that found in the residuals of the
group analysis; the volume is thresholded at the CFT
and the maximum cluster size recorded and used to
estimate the null distribution of the cluster size in real
data. Conclusions that apply to MCZ will also apply to
random field theory (see Greve and Fischl6 for more
details). In total, we performed 120,000 group analyses
(see Table 2). For MCZ, look up tables of cluster
p-values were created for thresholds of CFT<.05, .01,
.001 over a FWHM range of 1–30mm of smoothing
levels measured in the data. The probability of a cluster
at a given size can therefore be computed for a given
smoothness level, by indexing it into the look up table.
One of the main parametric assumptions in the MCZ
method is that the smoothness of the data follows a
Gaussian distribution, determined by the estimated
global FWHM. The global FWHM was computed
using the correlation coefficient between the residuals
of the GLM analysis between neighboring voxels (first
lag of a spatial autoregressive model), and then aver-
aged over all voxels. The residuals were estimated from
the GLM by subtracting the fitted data from the actual
data. The full spatial autocorrelation function (ACF)
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can be computed by estimating the correlation between
the residuals at different spatial distances. Skewness
was estimated from the residuals at each voxel.

For permutations, the design matrix was permuted,
followed by the recomputation of significance maps,
thresholding, and extraction of the cluster with maxi-
mal size.32 This was repeated 1,000 times to generate a
null distribution of maximal cluster sizes. The empirical
p-value for a given cluster was then computed as the

probability of seeing a cluster larger than the observed
size in the permuted null distribution. Confidence inter-
vals (CI) for the estimated FPR were computed using a
binomial model with 5% frequency and 1,000 trials.6

All code used to generate the results presented in this
paper can be found on GitHub (github.com/
Neurobiology-Research-Unit/PET_FPR). In addition,
the reporting of the experimental setup used in this
work is in accordance with the guidelines for the con-
tent and format of PET brain data.33

Results

Figure 1 shows the empirical FPRs for [11C]DASB and
[11C]SB207145 group analyses, corrected for multiple
comparisons using MCZ and permutations. For
MCZ, the FPRs are highly inflated for both radioli-
gands, both displaying an interaction between the
CFT and smoothing level. Only a CFT¼ 0.001 and a
FWHM of 12mm result in an expected range of 5%
FPR. For permutations, only a CFT¼ 0.05 and a
FWHM of 4mm result in marginally inflated FPRs.
The remaining settings behaved with little dependency
on CFT and FWHM, with all combinations falling
within the nominal 95% confidence interval of the
expected FPR. Notably, the dependencies between
FPR, FWHM and smoothing level were comparable
between the two tracers.

Table 2. Parameter choices.

Parameter Values used

PET data [11C]DASB (100 subjects), [11C]

SB207145 (59 subjects)

Smoothing 4, 6, 8, 10 or 12 mm FWHM

Analysis type Two-sample t-test (group

difference)

No. of subjects 20, 40

Correction type Permutations, Gaussian-based

Monte Carlo Simulation (MCZ)

CFT p¼ 0.05 (z¼ 1.96), p¼ 0.01

(z¼ 2.3), p¼ 0.001 (z¼ 3.1)

Note: Parameter choices tested for the PET data, resulting in a total of

120 (2� 5� 1� 2� 2� 3) combinations. One thousand group analyses

were carried out for each combination of parameters resulting in a total

of 120,000 analyses.

Figure 1. Clusterwise false positive rates (%) versus applied smoothing level for the two radioligands [11C]DASB and [11C]SB207145
(10/group) and for either parametric Monte Carlo simulations (A-B, MCZ) or permutations (C-D, Perm). Dashed lines are the 95%
significance level. Abbreviations: Full-Width Half Maximum (FWHM).
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Extent of false-positive clusters

The cluster extent thresholds to obtain significance at

CFT¼ 0.05 were 3-4 times higher for permutation cor-

rection than MCZ (Table 3 and S1). For example, for

[11C]DASB with 8mm smoothing a significant mean

cluster size was 6,766 voxels (CI: 1,947;34,415) using

MCZ and p< 0.05, whereas a mean cluster size using

permutations was 37,968 voxels (CI: 18,155; 69,887).

According to Figure 1, permutation correction and

MCZ correction became very similar at high CFT

and high smoothing levels, whereas the high FPR for

low smoothing levels and low CFT were largely driven

by small clusters.

Spatial distribution of false-positives clusters

To investigate whether the spatial distribution of false-

positive clusters was randomly distributed throughout

the brain, all significant clusters were binarized and

summed together to create a frequency map of clusters.

The frequency map in Figure 2 for [11C]DASB (10/

group) reflects the brain areas that are more likely to

be significant in a voxelwise analysis using clusterwise

parametric correction. The insula, temporal and ante-

rior cingulate cortices were the most likely areas to

contain a cluster, whereas white matter, cerebellum

and the brainstem were least likely. These local hot

spots are likely to reflect higher than average local

smoothness, violating the main parametric assumption

of stationary smoothing across the entire brain.

Notably, the effect was found to be radioligand-

specific, with [11C]SB207145 displaying a completely

different spatial distribution of false-positive clusters

with increased FPRs in the hippocampus, amygdala,

ventricles, orbitofrontal cortex, and parietal and occip-

ital cortices (Figure S2). This suggests that the non-

stationary smoothing is not necessarily a scanner

artefact, but rather interacts with the radioligand to
affect the spatial smoothness.

Spatial autocorrelation function of the noise

The behavior of the spatial ACF, averaged over all
brain voxels, was investigated for distances of
1–30mm and for spatial smoothing levels of 4–12mm
FWHM. The empirical ACFs are given in Figure 3,
including a reference squared exponential based on

the computed global FWHM. The empirical ACFs
are far from following a squared exponential, having
much heavier tails. Consistently with Eklund et al.5 and
Greve and Fischl,6 this explains why the parametric
methods work well for a high CFT and not as well
for a low CFT, reflecting local and distant autocorre-
lation, respectively.

Longitudinal analysis and preprocessing

To understand the origin of the heavy tails, the spatial
autocorrelation function was estimated with various
combinations of preprocessing (after motion correction
and spatial smoothing) using the longitudinal dataset
(Figure 4). The residuals from the longitudinal data set

were estimated by subtracting the mean difference over
the 30 subjects at each voxel from each of the 30 BPND

estimates. The ACFs were then estimated from the
paired difference residuals.6 The longitudinal dataset
was used to investigate the possibility of anatomical
features unique to individuals being the explanation
for the heavy tails.6 Consistently with Eklund et al.,5

we observed that the heavy tails exist in the raw data.

The longitudinal analysis slightly decreased the size of
the tails compared to the cross-sectional analysis but
was still far from the theoretical squared exponential.
Overall, because the heavy tails seem to be present in
the data without preprocessing, this suggests that the
heavy tails originate from the PET acquisition and/or

Table 3. Cluster sizes for significant cluster at different cluster forming thresholds.

p< 0.05 p< 0.01 p< 0.001

4mm 942 (275;4,340) 203 (86;713) 62 (30;202)

13,737 (5,202;33,994) 1,245 (695;3,110) 184 (107;422)

6mm 2,761 (778;16,087) 593 (235;2,055) 159 (80;482)

26,743 (11,868;54,719) 3,129 (1,410;10,850) 372 (215;422)

8mm 6,766 (1,947;34,415) 1,518 (574;6,865) 420 (205;1,579)

37,968 (18,155;69,887) 5,708 (2,125;21,075) 659 (313;2,094)

10mm 13,528 (3,755;56,476) 3,448 (1,168;16,179) 1,041 (380;3,618)

45,038 (24,401;108,680) 10,081 (3,408;41,540) 1,267 (425;4,164)

12mm 19,064 (5,953;69,090) 5,583 (1,984;38,693) 1,778 (645;10,226)

55,820 (29,807;113,165) 13,153 (4,203;55,126) 1,708 (557;9,808)

Note: Mean cluster sizes in voxels (2� 2� 2mm) and 95% confidence interval at various cluster forming thresholds (0.05–

0.001) and spatial smoothing levels (4–12mm) for the radioligand [11C]DASB and correction for multiple comparisons with

Monte Carlo simulations (upper value) and permutations (lower value).
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reconstruction and are amplified during the various
preprocessing steps.

Skewness

There was no consistent pattern of skewness in either
the cross-sectional or longitudinal data examined
(skewness ranging between -0.19 and 0.16), suggesting
that the data are symmetrical and normally distributed.

Discussion

In this study, we tested whether parametrically com-
puted clusterwise p-values are valid in voxelwise
group analyses of PET BPND data by empirically mea-
suring the FPRs. Across different radioligands, the
FPRs were largely inflated up to 99% for CFT’s
larger than 0.001 and smoothing levels below 12mm.
This is worse than for structural MRI6 and functional
MRI5 at matching CFT and smoothing levels. These
results were consistent across different tracers, group

Figure 2. The maps show the spatial distribution of false-positive clusters. The image intensity of the overlay (red/yellow) is the
number of instances (false positives, FP), out of 1,000 random group analyses for [11C]DASB (10/group, 8mm smoothing), a significant
cluster occurred at a given voxel (CFT¼ 0.05, p< 0.05).

Figure 3. Spatial autocorrelation function (SACFs) for the
[11C]DASB data (10/group) for nominal smoothing levels of 4, 6,
8 and 12mm. The values in the parentheses are the estimated
FWHM of the residuals. The dashed lines are the theoretical
Gaussian ACF computed using the estimated FWHM. All SACFs
are heavy-tailed compared to the Gaussian ACF.
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sizes (Figure S3), longitudinal and cross-sectional anal-
yses, and for different preprocessing choices. Similar to
structural MRI6 and fMRI,5 the FPRs were
well-controlled at 5% by using high CFT and high
smoothing levels or by using non-parametric permuta-
tion correction instead of a parametric correction.
While we focused on controlling the FPR at the cluster
level, a post hoc analysis at the voxel level using
parametric correction showed conservative FPRs,
consistent with previous observations5 (Figure S5).

Like fMRI and structural MRI, the source of the
problem was found to be spatial ACFs whose tail
was heavier than the Gaussian assumed by the para-
metric correction. Looking at the residual for two sub-
jects from the cross-sectional group analysis (Figure
S4A-B), one can see that there are large patches
where the residuals are either positive or negative (indi-
cating that the BPND is above or below the group
mean). The same effect was found in structural data.6

These large patches are an indication of long-range
spatial correlations in the BPND within subject that
are not captured well by a Gaussian kernel. Unlike
structural data, the spatial pattern of these patches
appears to change over time within subject (as indicat-
ed by the longitudinal analysis, Figure S4C) and hence
this probably does not represent an underlying subject-
specific pattern of neuroreceptor density; this also sug-
gests that a longitudinal analysis would not be spared
from inflated FPRs.

The source of these patches is most likely due to the
nature of the acquisition and analysis. The PET acqui-
sition is dynamic with multiple time points. The quan-
tification of PET data is based on dynamic data
acquisitions where the time-activity data are modeled

based on a reference region, meaning that brain regions

are likely to be correlated with each other as in resting
state fMRI34; use of an arterial input function (AIF),

instead of a reference region TAC, may result in lower
spatial correlation due to it being independent of the

imaging data.
This is now the fourth neuroimaging modality to

demonstrate elevated FPRs caused by heavy-tailed

ACFs, the other three being fMRI, VBM MRI, and
surface-based morphometry (SBM) MRI. Given the

results in these other modalities, it might not be sur-

prising to find them in PET. However, each modality
will have its own unique source of long-range spatial

correlation, so each modality needs to be evaluated
separately. For example, the heavy-tailed ACFs disap-

peared in longitudinal SBM but are still present in lon-

gitudinal PET, and different PET tracers had a
different spatial distribution of false clusters.

Impact of inflated false-positive rates

Focusing specifically on the inflated FPRs, it is impor-
tant to be aware of the implications of our results. As

previously mentioned, it is common to perform PET

voxelwise analysis in an exploratory fashion. On the
one hand this is reassuring, since, in PET, biological

findings are more often based on ROI, not voxelwise,
analyses. But in practice, inflated FPRs will lead to

false signals in exploratory analyses which, in turn,

can lead to the false selection of a priori regions for
future analyses. This should be considered carefully

when screening the literature for support of scientific
hypotheses previously to designing new studies. In

addition, this should be especially considered when per-

forming human studies involving PET, since PET is
more costly and invasive than other neuroimaging

techniques, such as structural or functional MRI. We
point out that our results apply to clusterwise p-values

near the .05 level; if previous studies had clusters that
were nominally more significant, then they might still

be significant at the .05 level even after proper

correction.

Effects of the spatial distribution of

false-positive clusters

The spatial distribution of false-positive clusters was

found to be distinct between the two radioligands,
with region-specific non-stationary smoothing, affect-

ing the local frequency of false positives. The most

likely regions to contain a cluster were found to be
areas with high radioligand uptake in combination

with high susceptibility to partial volume effects.

Figure 4. Spatial autocorrelation function (SACFs) for raw PET
data (no MC and smoothing), PET data after smoothing, and PET
data after motion correction. A theoretical squared exponential
is displayed as a reference (dotted line) at smoothing level 0mm
(blue) and level 6mm (red). The SACFs were estimated using the
longitudinal DASB dataset (N¼ 30). Abbreviations: Motion
Correction (MC).
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This included the putamen-insula region for [11C]
DASB, and the ventricles for [11C]SB207145. While
meta-analyses and comparisons between different stud-
ies can often help to tease apart true biological from
false findings for generating new biological hypotheses,
it is problematic if the FPRs are higher for certain areas
in the brain, such as high-binding areas, because those
areas will be repeatedly falsely activated and result in
false positives in a meta-analysis. Therefore, it is crucial
not to be misled by spurious findings in exploratory
analyses when designing new biological hypotheses
and to use accurate statistical tools that give valid
results for each and every study.

Effects of radioligand

While [11C]DASB and [11C]SB207145 had similar over-
all FPRs, the distribution of false clusters was wildly
different. For [11C]DASB, the cluster frequency map
showed evidence of hot spots in the insula and anterior
cingulate cortex, suggesting that these areas have high
smoothness. We speculate that this high smoothness
might be caused by nearby high-binding regions (puta-
men and caudate) and partial volume effects. For [11C]
SB207145, the main hot spot was the ventricles.
Notably, the high FPR in the ventricles was only pre-
sent in the CFT¼ 0.05 threshold but was removed for
CFT¼ 0.01. In a post-hoc analysis, we identified that
all voxels in the ventricles had BPND below 0, suggest-
ing that a proper threshold and/or better definition of a
whole brain mask will limit the degree of false positives.
For example, Deen et al. 2018, using [11C]SB207145
and a threshold of BPND> 0.3 to create a brain mask
a priori to any statistical analysis, obtained no signifi-
cant clusters despite a parametric correction for multi-
ple comparisons using a CFT¼ 0.05. It is of note
though, that it is not standard procedure to threshold
BPND values in voxelwise analysis, but this should be
considered.

However, for both radioligands, the uptake in high-
binding regions is slow and shows lower identifiability
of the BPND, and a high variability in the estimate
between subjects.35 Consequently, the higher variability
in BPND between subjects in the high-binding regions
compared to low and/or medium binding regions, may
make the spatial smoothness vary across the brain,
leading to a higher degree of FPRs. Notably, it has
been shown for VBM data that local smoothness sys-
tematically varies with tissue type, with frontal and
temporal areas displaying a high degree of false posi-
tives.8 For resting-state fMRI, Eklund et al.5 identified
the posterior cingulate, part of the default mode net-
work (DMN), as a local hot spot with high smooth-
ness, arguing that non-stationarity is a possible
contributing factor. The DMN will be constantly

activated in resting-state fMRI, similarly to high

signal in high-binding regions for dynamic PET, and

we speculate that the non-stationary smoothness is the

primary cause of the spatial distribution of FPRs.

Effects of preprocessing and kinetic modeling

The degree of smoothing had a major effect on the

ACF (Figure 3). While we smoothed the voxelwise

time activity curves (TACs) before kinetic modeling,

it is possible to smooth the BPND maps after kinetic

modeling, and this may have an effect on the correla-

tion and the FPRs. In the vast majority of studies,

smoothing is carried out before performing kinetic

modeling because the noise at the voxel level is high

and will consequently lead to an unstable solution of

the model fit (Greve et al.6). However, there are also

examples in the literature applying spatial smoothing

after kinetic modeling (e.g. Frick et al.16). To investi-

gate the effect further, we carried out a post hoc anal-

ysis using the first time point of the longitudinal data

set. Specifically, we applied a 6mm filter either before

or after kinetic modeling using MRTM2 and estimated

the corresponding ACFs (Figure S6). The ACF with

smoothing after kinetic modeling was markedly lower

compared to the ACF with smoothing applied before,

approaching the theoretical ACF. However, when

inspecting the residual variance maps of the group

analysis (Figure S7), the variance when smoothing

after kinetic modeling was dramatically higher than

smoothing before. This suggests that the noisy esti-

mates from kinetic modeling and subsequent smooth-

ing breaks the spatial correlation structure in the BPND

maps and produces a lower ACF. While this is positive

in the sense that the corresponding FPR will be lower,

it comes at the expense of higher variance and inaccu-

rate estimates at the subject-level, potentially produc-

ing spurious results in a group analysis.
Various kinetic modeling approaches have also been

used in voxelwise analyses of PET data such as

MRTM214 and Logan Graphical analyses.16 These

kinetic models do not have the same variance proper-

ties24 and may result in different ACFs and conse-

quently affect the FPR. To investigate this further,

we also analyzed the first time point of the longitudinal

data with 6mm smoothing and Logan graphical anal-

ysis38 and compared the ACF between MRTM2 and

Logan (Figure S8). The ACF for Logan was similar but

slightly more heavy-tailed than MRTM2. When

inspecting the residual variance maps of the group

analysis (Figure S9), we found that Logan produced

lower between-subject variance compared to

MRTM2, in line with previous work.24 These results

suggest that kinetic models with varying variance
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properties will have an impact on the FPRs but that
elevated FPRs in parametric clusterwise analysis will
remain.

Feasibility of using non-parametric testing

Based on our data, we strongly recommend that in the
future, voxelwise PET analyses should adapt more
stringent multiple comparison correction and higher
smoothing levels. We advocate for the use of non-
parametric methods for multiple comparison correc-
tion. While previously the computational complexity
was the main drawback of permutation tests, this is
not an issue with the recent increase in computational
power. Also, we would like to point out that although
permutation tests in voxelwise analyses have only
rarely been used in PET, all major neuroimaging pack-
ages (SPM, FSL, FreeSurfer, PALM) and their exten-
sions offer the possibility of calculating empirical
cluster p-values via permutations. Hence, the statistical
tools are also freely available. The presence of non-
stationarity can cause the p-values to be too conserva-
tive in less smooth regions, but it is possible to account
for this by modifying the computation of the cluster
size to incorporate local smoothness information.36

While permutation tools are readily available and
easy to apply, it is not always possible to apply them
correctly because the data must be exchangeable.
Exchangeability means that the joint distribution of
the data is invariant under permutation. This can be
violated when PET data are skewed. Eklund et al.5

reported skewness in the fMRI one-sample t-tests,
where the aim is to compare a sample mean to a
hypothesized population mean, and that this skewness
caused the permutation correction to be inaccurate;
they found no skewness in the two-sample t-tests,
where they compare the means of two samples. We
found no significant skewness in our two-sample
tests. While skewness should always be tested, our
results suggest that skewness is not a barrier to perform
proper permutation tests in PET. Exchangeability can
also be violated by the presence of systematic effects
across subjects (e.g., age effects), though approxima-
tions exist for the latter violation.37 While permuta-
tions can be difficult to apply correctly, the tradeoffs
in using permutations seem worthwhile in the face of
such inflated FPRs with parametric methods.

Conclusions

We found that voxelwise analyses of PET data using
parametric clusterwise correction for multiple compar-
isons can result in highly inflated FPRs up to 99%,
much higher than for structural and functional MRI.
The FPR at various smoothing levels and CFTs is

independent of the tracer, but the spatial location of the
false positives depends on the tracer. The FPRs were prop-
erly controlled by using non-parametric permutation.
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